内容推荐如何更懂你?Netflix的《捍卫者联盟》实验有些答案
分类:互联网事 热度:

  Netflix在互联网时代的成功,是一件非常值得回味的事。

  作为一家以租赁起家,以流媒体平台这种不算很新锐的企业特征,获得了世界科技领域的普遍认同,甚至能够与巨头一较高下。Netflix显然不止是在内容和品牌宣传上作对了一些事情。

  比如说,有长期使用Netflix经验的朋友(虽然目前在国内有点难),肯定会对Netflix的个性推荐系统留有深刻印象。事实上,Netflix在内容推荐上的技术实力与效率一直广泛受到业界认同

  根据Netflix提供的官方数据,使用个性推荐系统之后,其平台用户的观看率提升了 3 到 4 倍,而基于个性推荐系统打开的视频数量,是从最受欢迎列表打开数量的 4 倍。

  在国内,“千人千面”“内容找人”近两年也是很热门的话题。但很少有人分析内容推荐系统的内部逻辑,以及更好的内容推荐系统需要哪些因素。

  最近广受期待的漫威剧《捍卫者联盟》在Netflix放出之后,Netflix官方展示了他们基于这部剧做的内容推荐尝试与数据实验。以此为契机,我们或许可以一窥“别人家的推荐引擎”。

  懂算法的同时要懂内容

  《捍卫者联盟》之所以特别,原因在于它就像《复仇者联盟》一样(好多联盟啊),是几个各自有独立剧集的超级英雄组合到一起的“混合剧”。

  对于Netflix来说,这部剧的价值在于这四位英雄有各自的受众群体(铁拳应该没有中国受众吧),而组合起来的人设与故事是否能覆盖各自人群之和,还是应该推向新的人群呢?

  (四个独立英雄受众有不同的观影喜好和关键词标记 )

  针对这个问题,Netflix将《捍卫者联盟》当做了一块试验田,他们将密切关注这部剧的数据走向,并且对不同身份标识的用户实行不同的推荐策略。测试结果将形成新的机制,用来确定如何向不同的兴趣组提供“混搭剧”推荐,同时也可以根据反馈来确定以后是否要制作更多不同剧集人物的组合剧。

  相比于国内的主流内容推荐引擎(无论是信息、短视频还是视频)通常采取以用户为中心,根据用户浏览、收藏、付费等行为来建构个性化推荐体系,Netflix让我们看到了另一种可能:以内容特征为中心,去分析不同内容可以推荐给谁,如何推荐,甚至是否要调整内容。“更懂内容的个性推荐”不仅建立在对内容文本特征的把握上,更重要的是技术能力足够支撑这种创造力。

  否则从用户、内容双向互动来匹配推荐机制,将是一个工作量巨大且错误率高企的任务。那么问题来了,站在Netflix推荐系统背后的,究竟是一个什么样的技术体系呢?

  好戏的基础,是一个足够大的舞台

  简单来描绘的话,Netflix个性内容推荐机制的特色,就是要在保证用户使用流畅的前提下,不遗余力的装备更多、更复杂的算法组合。

  具体的算法我们一会再聊。首先要弄清楚的问题是Netflix内容推荐系统的底层基础是什么。

  假设我们认为,更多的算法和技术,可以带来更巧妙的运算和结果,并且相互制约出趋向合理的结论。那么平台的第一要务就是要保证运算能力可以负担复杂的算法与数据挖掘技术运行,并且保证平台可以敏捷轻松的加入后续越来越多的算法。

  那么第一个问题就是运算能力的保证。我们知道,人工智能的多元算法要求的运算力特别高,传统的CPU+服务器模式在成本上很难满足复杂的AI系统运行。

  而Netflix是最先尝试在AWS上使用GPU实现分布式神经网络的企业之一。虽然今天这种组合正在逐渐成为标配,但在几年前使用GPU代替大型集群的CPU作为平台支撑是一个创举。

上一篇:大咖云集 | 2017中国产品经理大会 解码未来产品经理,9月23-24日即将在中国硅谷 · 深圳召开 下一篇:押金500元,健身5次全额退款,号称半年回本的合约健身房靠谱吗?
猜你喜欢
各种观点
热门排行
精彩图文